This book takes a historical and geometrical approach to Einstein’s General Theory of Relativity. It details the latest developments in the field, including cutting-edge research on gravitational waves, black holes, and cosmology.
Explore the interaction of electron beams with plasma and beam plasma discharge. This book covers the history, theory, and experimental research, with a focus on applications ranging from the physics of near-Earth space to materials technologies for micro- and nanoelectronics.
Entropy is one of the most interesting concepts in physics. Although a well-defined concept, it is still frequently perceived as one cloaked in mystery. This book, however, discusses entropy and the Second Law of Thermodynamics in such a way that everyone can understand them.
This book discusses the basic tools of mathematical physics for physicists, mathematicians, and engineers. It reveals the indissoluble connection between physical ideas and mathematical concepts, emphasizing the physical origin and flexibility of the equations.
Everything You Need to Know About Black Holes
What are black holes? They may hold the key to unifying Einstein’s gravity and quantum mechanics. Are they the final stage of a collapsing star? Or do primordial black holes reveal a different origin? This book presents the latest insights into these enormous challenges.
This book investigates dynamical mass generation in four-fermion models, exploring the composite Higgs boson and effective chiral Lagrangians. It proves these models describe the region between asymptotic freedom and quark confinement.
Fractal Fluctuations and Climate Cycles in Atmospheric Flows
This book unveils a systems theory where fractal fluctuations are signatures of quantum-like chaos. Based on statistical physics, the model predicts a distribution that is near-normal for moderate events but exhibits a fat long tail associated with hazardous extreme events.
From Nonlinear Dynamics to Trigonometry’s Magic
This book unravels the mathematics of nonlinear dynamics using simple trigonometry. A tutorial for beginners and experts, it examines the fundamental example of Chaos, the Lorenz-Haken equations, with an original approach. For physicists, mathematicians, and students alike.
This book presents a theoretical description of fiber Bragg gratings, focusing on channel densification and tunability. It includes full Matlab code to synthesize and optimize various gratings using genetic algorithms, simulated annealing, and tabu search.
Fundamental Optics
This book updates our knowledge of light with new data from reproducible experiments. It presents a new theory which interprets verifiable information according to the various speeds of the lights involved, examining light’s general motions in space.
This book introduces reactor physics in a simple, intuitive way. It explains key mathematical concepts without losing scientific rigour, making it ideal for getting started with radioactivity calculations or basic problems in reactor physics.
General Relativity Conflict and Rivalries
Galina Weinstein investigates Albert Einstein and his interactions with various scientists, focusing on their implicit and explicit responses to his work. This analysis reveals the central figures who influenced Einstein during his work on the general theory of relativity.
Geometric and Wave Optics
A comprehensive course covering geometric, wave, and quantum optics, with applications and devices. Featuring clear diagrams, it offers detailed explanations with a physical approach and precise mathematical formalism. For undergraduate students, engineers, and researchers.
Growing Large Crystals of Diamonds
This guide shows how to grow large CVD diamond crystals for gems and industrial applications. For experts and newcomers, it covers the technology, details difficulties encountered during growth and their resolutions, and explains how to identify CVD diamonds from simulants.
Einstein’s geometric time versus Bergson’s experienced duration. Are they two separate entities? Relying on research into space-time and the philosophy of mind, this book posits that the physical world evolves predictably and examines if our relationship to time can be modified.
This book uses complexity research to overcome the categorizations and opposites that limit our descriptions of existence. It offers innovative philosophical insights to arrive at a unified vision of nature and society, governed by the same laws of non-linearity.
This textbook is a unique treatise on the present status of particle physics summarised for physics students at an introductory level: it provides insights into essential experimental and theoretical techniques and will gradually deepen the reader’s understanding of the field.
This introductory physics course is for first-year engineering students. Based on the authors’ teaching experiences, it covers classical mechanics, oscillation, radiation, thermodynamics, and fluidics to ease the transition for students who struggle with the topic.
This book expands the classical theories of photoluminescence and photoconductivity with a new multicentre model. Its solutions coincide with experimental results, opening promising directions for the search for new and improved crystals for optoelectronic devices.