This book presents 10 actions for practical results in seismology. Through statistical analysis, we can estimate the probability of the next earthquake and identify foreshocks. From seismic waves, we can deduce an earthquake’s energy, magnitude, and the fault’s orientation.
This textbook is a unique treatise on the present status of particle physics summarised for physics students at an introductory level: it provides insights into essential experimental and theoretical techniques and will gradually deepen the reader’s understanding of the field.
Sound is a major tool for studying the ocean environment and marine life. Understanding Ocean Acoustics focuses on environmental research using low frequencies relevant to fish and sea mammals, covering geoacoustic properties missing in most books on underwater acoustics.
For physics scholars and general readers, this book explores the action of ultra-low doses on biological systems. It covers medicinal remedies like homeopathy, the influence of color and form, and the Twin Correlation.
Explore the improved optical detectors, from UV to far-infrared, that power a new era of measurement. This guide helps scientists and engineers select, build, and calibrate instruments for superior accuracy and expanded applications.
This book integrates Western science with Oriental philosophy, proposing a unified theory of physics. Using a simple mathematical model, it explains the fundamental concepts of dynamics, connecting Newtonian mechanics, relativity, and quantum wave dynamics.
The “Ultraviolet Catastrophe”, the failure to account for black-body radiation, led to quantum mechanics. Another catastrophe was politely ignored and fluid dynamics remained trapped in the nineteenth century. The book outlines a solution to this dilemma.
This book explores quantum-mechanical scattering in macroscopic targets and the conditions for coherent scattering on a macroscopic scale. It introduces coherence domains and examines their role in scattering, emphasizing the momentum and energy transfer to the target.
Post-Newtonian Hydrodynamics
This book develops post-Newtonian kinetic and phenomenological theories, deriving hydrodynamic equations and exploring astrophysical applications like stellar structure, Jeans instability, and galaxy rotation curves. For physicists, astrophysicists, and advanced students.
This book uses complexity research to overcome the categorizations and opposites that limit our descriptions of existence. It offers innovative philosophical insights to arrive at a unified vision of nature and society, governed by the same laws of non-linearity.
This monograph covers symmetries on a symplectic manifold, giving rise to quantum field theory via phase space and the Wigner function. This approach describes quantum chaos, introduces gauge symmetries, and leads to Symplectic Schrödinger, Klein-Gordon, and Dirac equations.
The Fundamental Principles of Physics
This book provides a precise idea of what an atom or molecule is using quantum theory. To overcome student comprehension difficulties, it insists on the importance of underlying physical principles, such as particle-wave duality, indeterminism, and presence probability.
Over the past 60 years, optics has changed radically. The invention of the laser led to new branches of the field. This work unites traditional and modern optics into a single theory, using modern mathematical tools and a heuristic approach.
This book covers the diffraction, radiation, and propagation of elastic waves in isotropic and anisotropic media. It details key methods and their application to hydroacoustic antennas, loudspeakers, and the acoustic monitoring of oil products.
This book describes physical effects caused by impurity atoms that localize electrons and phonons in nanosystems. It presents the first-ever application of the method of local perturbations to describe the physical properties of a wide range of nanosystems.
Silicon Dioxide and the Luminescence of Related Materials
This book focuses on the physics of disordered solids, challenging theories based on crystal structures. It compares data for crystals and glasses formed by the same atoms, paying particular attention to under-explored glass-forming crystals for students and researchers.
This book addresses the complex N-body problem, providing a general approach to show that many mass configurations can be solved deterministically. It gives the reader the tools to master binary, trinary, and quadruple structured configurations for real and theoretical work.
With an irreverent tone, the author debunks modern physics using common sense and experimental evidence. He proposes a new unifying model where all events are connected, from the subatomic to galaxies. This provocative read requires no advanced scientific knowledge.
This book reviews statistic/thermodynamic models for both polarized and unpolarized structure functions, with additional applications such as the EMC effect. It will appeal to researchers and students of hadronic and nuclear/particle physics.
This guide helps the optical radiation measurement community switch from traditional source-based methods to higher-accuracy, detector-based applications. It covers user-friendly radiometric practices, setup design, and extensions into the ultraviolet and infrared ranges.