This book covers the spatial anisotropy of induced optical effects in crystalline materials. It details analytical descriptions, 3D geometric representations, and experimental methods for studying electro-, piezo-, elasto-, and acousto-optic phenomena.
For advanced students, this book establishes a path from the study of phase transitions to the current understanding of living matter. It explores concepts from statistical mechanics, non-linear systems, chaos and self-organization drawn from physics, chemistry and biology.
This book provides solutions to problems in solid-state physics that have eluded scientific explanation for decades, tackling mysteries like the structure of thin films, the existence of amorphous metals, and the cause of the Giant Hall Effect.
Celebrating Paolo Grigolini’s 50-year legacy in non-equilibrium statistical physics. This collection explores his pioneering work on the quantum-classical connection, anomalous diffusion, and new methods for detecting scaling in time series.
This book explores the mechanics of smart nanocomposite sandwich plates, covering theories of buckling, vibration and dynamic instability. It presents models for material properties and derives governing equations using the energy method and Hamilton’s principle.
Einstein’s geometric time versus Bergson’s experienced duration. Are they two separate entities? Relying on research into space-time and the philosophy of mind, this book posits that the physical world evolves predictably and examines if our relationship to time can be modified.
From energy and electronics to medicine, oxide materials are essential. This book presents the fundamentals of oxide powders, establishing a connection between their structure and electromagnetic properties to pave the way for new technological and biomedical applications.
This book presents 10 actions for practical results in seismology. Through statistical analysis, we can estimate the probability of the next earthquake and identify foreshocks. From seismic waves, we can deduce an earthquake’s energy, magnitude, and the fault’s orientation.
At last, a clear path through quantum mechanics. This book intuitively unravels entanglement and wave-particle duality, revealing a profound truth: the objectivity of reality is not a simple yes-or-no question.
This is the first book to present the direct method for solving inverse problems in X-ray spectroscopy, scattering, tomography, and reflectometry. It discusses the theory for multilayer structures and the phase problem in electron structural crystallography.
This book describes physical effects caused by impurity atoms that localize electrons and phonons in nanosystems. It presents the first-ever application of the method of local perturbations to describe the physical properties of a wide range of nanosystems.
A practical guide to characterizing and overcoming drawbacks in electro-optical devices. It explores noise and fading phenomena in optical communication links, both wireless (LIDAR) and fiber-optic, for students and professionals in optical communication and device design.
This book presents insights into manganese oxides, materials with important technological applications in magnetic refrigeration and sensors. With elegant and didactic mathematical proofs, it will interest both researchers and the general reader interested in the subject.
The Fundamental Principles of Physics
This book provides a precise idea of what an atom or molecule is using quantum theory. To overcome student comprehension difficulties, it insists on the importance of underlying physical principles, such as particle-wave duality, indeterminism, and presence probability.
Nanostructured Nonlinear Optical Materials
This book focuses on novel applications of nanostructured nonlinear optical materials, including optical limiting, Q-switching, mode-locking, and laser-nanoplasma physics. It is useful for physicists, material scientists, and engineers interested in laser technology.
This book addresses the complex N-body problem, providing a general approach to show that many mass configurations can be solved deterministically. It gives the reader the tools to master binary, trinary, and quadruple structured configurations for real and theoretical work.
This book describes mathematical methods for calculating nuclear characteristics and intercluster potentials. It discusses phase shift analysis of elastic scattering at low and astrophysical energies and investigates three-body models of light nuclear nuclei.
This book explores the nonlinear features of natural phenomena through mathematical models. It focuses on practical methods to investigate these problems, presenting approaches applicable to a wide class of nonlinear equations and guiding even uninitiated readers.
This book provides the “picture of reality” for the quantum world that eluded Einstein. It offers a realistic interpretation compatible with all experimental evidence, plus new perspectives on dark energy, dark matter, and stellar collapse, summarizing 50 years of research.