Silicon Dioxide and the Luminescence of Related Materials
This book focuses on the physics of disordered solids, challenging theories based on crystal structures. It compares data for crystals and glasses formed by the same atoms, paying particular attention to under-explored glass-forming crystals for students and researchers.
This book integrates Western science with Oriental philosophy, proposing a unified theory of physics. Using a simple mathematical model, it explains the fundamental concepts of dynamics, connecting Newtonian mechanics, relativity, and quantum wave dynamics.
This book uses complexity research to overcome the categorizations and opposites that limit our descriptions of existence. It offers innovative philosophical insights to arrive at a unified vision of nature and society, governed by the same laws of non-linearity.
This book explores statistical physics, focusing on subjects from condensed matter to black holes. It discusses gas-liquid transitions, the entropy of earthquakes, the hadronization of the quark-gluon plasma, and the phase diagram of quantum chromodynamics.
Existing methods for studying the piezooptic properties of crystals are imperfect and lead to significant errors. This book introduces 2D-polarimetric and interferometric methods that increase experimental accuracy and ensure reliable results for photoelastic properties.
This book generalizes transforms from accelerated frames to inertial frames—essential for real-world applications where labs are not truly inertial. It covers the theory and derivation of relativistic fictitious forces (Coriolis, centrifugal) and the Thomas Wigner effect.
From Nonlinear Dynamics to Trigonometry’s Magic
This book unravels the mathematics of nonlinear dynamics using simple trigonometry. A tutorial for beginners and experts, it examines the fundamental example of Chaos, the Lorenz-Haken equations, with an original approach. For physicists, mathematicians, and students alike.
Post-Newtonian Hydrodynamics
This book develops post-Newtonian kinetic and phenomenological theories, deriving hydrodynamic equations and exploring astrophysical applications like stellar structure, Jeans instability, and galaxy rotation curves. For physicists, astrophysicists, and advanced students.
This book provides the “picture of reality” for the quantum world that eluded Einstein. It offers a realistic interpretation compatible with all experimental evidence, plus new perspectives on dark energy, dark matter, and stellar collapse, summarizing 50 years of research.
This book explores the nonlinear features of natural phenomena through mathematical models. It focuses on practical methods to investigate these problems, presenting approaches applicable to a wide class of nonlinear equations and guiding even uninitiated readers.
This book describes mathematical methods for calculating nuclear characteristics and intercluster potentials. It discusses phase shift analysis of elastic scattering at low and astrophysical energies and investigates three-body models of light nuclear nuclei.
This book addresses the complex N-body problem, providing a general approach to show that many mass configurations can be solved deterministically. It gives the reader the tools to master binary, trinary, and quadruple structured configurations for real and theoretical work.
Nanostructured Nonlinear Optical Materials
This book focuses on novel applications of nanostructured nonlinear optical materials, including optical limiting, Q-switching, mode-locking, and laser-nanoplasma physics. It is useful for physicists, material scientists, and engineers interested in laser technology.
The Fundamental Principles of Physics
This book provides a precise idea of what an atom or molecule is using quantum theory. To overcome student comprehension difficulties, it insists on the importance of underlying physical principles, such as particle-wave duality, indeterminism, and presence probability.
This book presents insights into manganese oxides, materials with important technological applications in magnetic refrigeration and sensors. With elegant and didactic mathematical proofs, it will interest both researchers and the general reader interested in the subject.
A practical guide to characterizing and overcoming drawbacks in electro-optical devices. It explores noise and fading phenomena in optical communication links, both wireless (LIDAR) and fiber-optic, for students and professionals in optical communication and device design.
This book describes physical effects caused by impurity atoms that localize electrons and phonons in nanosystems. It presents the first-ever application of the method of local perturbations to describe the physical properties of a wide range of nanosystems.
This is the first book to present the direct method for solving inverse problems in X-ray spectroscopy, scattering, tomography, and reflectometry. It discusses the theory for multilayer structures and the phase problem in electron structural crystallography.
At last, a clear path through quantum mechanics. This book intuitively unravels entanglement and wave-particle duality, revealing a profound truth: the objectivity of reality is not a simple yes-or-no question.
This book presents 10 actions for practical results in seismology. Through statistical analysis, we can estimate the probability of the next earthquake and identify foreshocks. From seismic waves, we can deduce an earthquake’s energy, magnitude, and the fault’s orientation.