Post-Newtonian Hydrodynamics
This book develops post-Newtonian kinetic and phenomenological theories, deriving hydrodynamic equations and exploring astrophysical applications like stellar structure, Jeans instability, and galaxy rotation curves. For physicists, astrophysicists, and advanced students.
This book explains the theory and technology of converting electric energy to other forms, such as thermal, chemical, or mechanical. It offers new calculation methods and operating principles for electrotechnological equipment widely used in Eastern Europe.
Predictive Models for Soil Contaminants
This book provides a first-of-its-kind collection of predictive spreadsheet models for soil contaminant behavior. It presents graphic and numerical predictions of physical and chemical changes, appealing to governments, companies, scientists, engineers, and researchers.
This book highlights a new area in laser ablation in liquid, focusing on pseudo-line tension and the cavitation bubble. It theoretically reproduces the bubble’s dynamics and offers insights into its role in nanoparticle growth and its effect on the liquid’s thermal properties.
This lucid analysis of quantum mechanics emphasizes the fundamentals using Dirac’s notation. It explains the latest topics, like Quantum Computing, and features a rich collection of solved examples. This comprehensive text is ideal for graduate and research students in physics.
This book proposes a model of light knot electronic structure, challenging the interpretation of quantum entanglement and proving a paradox in the uncertainty relationship. It establishes the foundation for a deterministic, local-realism quantum mechanics.
This book explores how simple optical systems can create fascinating quantum states, including Schrödinger’s cat-type states of light. Using abundant graphics over formulas, it makes modern quantum optics accessible to scientists, teachers, and students of physics.
Explore bulk and nanostructure crystals, from crystal lattices and band theory to energy gaps. This book discusses low-dimensional systems like graphene and carbon nanotubes and is an ideal introduction for students and researchers in condensed matter physics.
This book provides the “picture of reality” for the quantum world that eluded Einstein. It offers a realistic interpretation compatible with all experimental evidence, plus new perspectives on dark energy, dark matter, and stellar collapse, summarizing 50 years of research.
This book generalizes transforms from accelerated frames to inertial frames—essential for real-world applications where labs are not truly inertial. It covers the theory and derivation of relativistic fictitious forces (Coriolis, centrifugal) and the Thomas Wigner effect.
This book explores quantum-mechanical scattering in macroscopic targets and the conditions for coherent scattering on a macroscopic scale. It introduces coherence domains and examines their role in scattering, emphasizing the momentum and energy transfer to the target.
Silicon Dioxide and the Luminescence of Related Materials
This book focuses on the physics of disordered solids, challenging theories based on crystal structures. It compares data for crystals and glasses formed by the same atoms, paying particular attention to under-explored glass-forming crystals for students and researchers.
This book presents over 40 experiments in optics for students and engineers. Covering components like lenses, mirrors, and gratings, each experiment is clearly described with concise, easy-to-understand theory to explain the principles underlying them.
This book addresses the complex N-body problem, providing a general approach to show that many mass configurations can be solved deterministically. It gives the reader the tools to master binary, trinary, and quadruple structured configurations for real and theoretical work.
This book graphically represents metallic and semi-metallic elements, allowing their nature to be interpreted. Each element is plotted in a diagram with thermal conductivity on the abscissa and the Young’s modulus on the ordinate.
This book covers the spatial anisotropy of induced optical effects in crystalline materials. It details analytical descriptions, 3D geometric representations, and experimental methods for studying electro-, piezo-, elasto-, and acousto-optic phenomena.
This book presents a unified, accessible approach to the physics of the liquid state, in and out of equilibrium. It covers statistical mechanics and complex fluids, making it an indispensable reference for graduate students and researchers in physics and chemistry.
This book reviews statistic/thermodynamic models for both polarized and unpolarized structure functions, with additional applications such as the EMC effect. It will appeal to researchers and students of hadronic and nuclear/particle physics.
This book explores statistical physics, focusing on subjects from condensed matter to black holes. It discusses gas-liquid transitions, the entropy of earthquakes, the hadronization of the quark-gluon plasma, and the phase diagram of quantum chromodynamics.
This book explores the synthesis, characterization, and applications of graphene and its derivatives, including quantum dots. For the first time, both industrial and medical applications are gathered in one book, offering a unique perspective on the future of the field.