Construction projects require engineers, surveyors, and contractors to interact effectively to ensure a project is built precisely. The knowledge of basic words, concepts, and methods used by surveyors will greatly help engineers during this interaction.
This monograph covers symmetries on a symplectic manifold, giving rise to quantum field theory via phase space and the Wigner function. This approach describes quantum chaos, introduces gauge symmetries, and leads to Symplectic Schrödinger, Klein-Gordon, and Dirac equations.
This book covers the diffraction, radiation, and propagation of elastic waves in isotropic and anisotropic media. It details key methods and their application to hydroacoustic antennas, loudspeakers, and the acoustic monitoring of oil products.
The “Ultraviolet Catastrophe”, the failure to account for black-body radiation, led to quantum mechanics. Another catastrophe was politely ignored and fluid dynamics remained trapped in the nineteenth century. The book outlines a solution to this dilemma.
Semiconductor silicon is the basic material of modern electronics. Its properties are determined by defects in its crystal structure, but a complete description of these defects has been a mystery—until now. This book solves it using classical and probabilistic approaches.
Over the past 60 years, optics has changed radically. The invention of the laser led to new branches of the field. This work unites traditional and modern optics into a single theory, using modern mathematical tools and a heuristic approach.
The Fundamental Principles of Physics
This book provides a precise idea of what an atom or molecule is using quantum theory. To overcome student comprehension difficulties, it insists on the importance of underlying physical principles, such as particle-wave duality, indeterminism, and presence probability.
From energy and electronics to medicine, oxide materials are essential. This book presents the fundamentals of oxide powders, establishing a connection between their structure and electromagnetic properties to pave the way for new technological and biomedical applications.
The General Theory of Particle Mechanics
Yefremov provides insights into the tight connection between fundamental math and mechanics, demonstrating that quantum, classical, and relativistic mechanics can be regarded as links of a single theoretical chain readily extracted from a simple mathematical medium.
This book provides solutions to problems in solid-state physics that have eluded scientific explanation for decades, tackling mysteries like the structure of thin films, the existence of amorphous metals, and the cause of the Giant Hall Effect.
This book explores the mechanics of smart nanocomposite sandwich plates, covering theories of buckling, vibration and dynamic instability. It presents models for material properties and derives governing equations using the energy method and Hamilton’s principle.
This book describes physical effects caused by impurity atoms that localize electrons and phonons in nanosystems. It presents the first-ever application of the method of local perturbations to describe the physical properties of a wide range of nanosystems.
The unique experiments, numerous measurements, and resulting data presented here, have been collected over 30 years of research and prove with scientific precision, that consciousness involves more than just the brain, but actually depends on the very fabric of the universe.
This book presents the electrical characterization of DBD-based atmospheric pressure plasma jets (APPJs) for biomedical & material applications. It establishes optimum operation ranges without arcing, showing how working gas affects power consumption and jet length.
This book shows the objective beauty of science, from the micro- and macrocosm to the fundamental constants of the universe. It examines the human organism as a system and explores ways to transition from a state of “illness” to a state of “health”.
The Mystery of Ball Lightning Revealed
This book explores a new phenomenon: self-confined circulating light. It explains the paradox of ball lightning and microworld anomalies, and shows how nuclear energy can be extracted from ordinary water. Based on over 80 published scientific articles.
A practical guide to characterizing and overcoming drawbacks in electro-optical devices. It explores noise and fading phenomena in optical communication links, both wireless (LIDAR) and fiber-optic, for students and professionals in optical communication and device design.
The Physical Reality of Applied Quantum Optics
This book scrutinises quantum optic experiments, revealing hitherto ignored phenomena. It shows that there are no quantum optic “miracles” once the physically present effects are correctly identified, leading to a new understanding of quantum locality and realism.
Explore the improved optical detectors, from UV to far-infrared, that power a new era of measurement. This guide helps scientists and engineers select, build, and calibrate instruments for superior accuracy and expanded applications.
This book offers a wide perspective on physics, from atoms to galaxies. It explains complicated issues through simple examples, combining popular science with scholarly insights and offering philosophical perspectives.