This book presents the electrical characterization of DBD-based atmospheric pressure plasma jets (APPJs) for biomedical & material applications. It establishes optimum operation ranges without arcing, showing how working gas affects power consumption and jet length.
This volume presents research on gas-discharge plasma for creating powerful, tunable excilamps. It details the application of these studies to develop efficient blue-green and ultraviolet radiation sources for specialists in plasma physics and quantum electronics.
This book explores how simple optical systems can create fascinating quantum states, including Schrödinger’s cat-type states of light. Using abundant graphics over formulas, it makes modern quantum optics accessible to scientists, teachers, and students of physics.
This book offers a wide perspective on physics, from atoms to galaxies. It explains complicated issues through simple examples, combining popular science with scholarly insights and offering philosophical perspectives.
This book presents a complex approach to material composition determination using joint X-ray spectra of fluorescence, scattering, and diffraction. These methods widen the application of X-ray analysis for specialists in solid state physics and students.
Dialogues on the New Physics
Eurythmic physics seeks to unify physics for a clearer view of nature. This book develops this approach, arguing that because physical phenomena are not linear, they must be understood from a nonlinear, interrelated, and complex perspective.
This book presents physical kinetics from a unique angle, deriving the Boltzmann equation from atomic motion using Landau’s elementary excitations. It details the kinetic theory of classical gas and plasma, the lifetime of phonons, and the features of superconductivity.
This book presents research on the diffraction, radiation, and propagation of elastic waves, focusing on interactions between bodies and media interfaces. It details solutions to three-dimensional wave problems for isotropic and anisotropic bodies using Debye potentials.
This book graphically represents metallic and semi-metallic elements, allowing their nature to be interpreted. Each element is plotted in a diagram with thermal conductivity on the abscissa and the Young’s modulus on the ordinate.
This book presents over 40 experiments in optics for students and engineers. Covering components like lenses, mirrors, and gratings, each experiment is clearly described with concise, easy-to-understand theory to explain the principles underlying them.
Constructal theory is widely used, but often incorrectly applied, leading to unreasonable results. This book systematically reviews its applications in fields from economics to heat transfer, pointing out significant flaws, mistakes, and limitations. An essential read for anyone.
Entropy is one of the most interesting concepts in physics. Although a well-defined concept, it is still frequently perceived as one cloaked in mystery. This book, however, discusses entropy and the Second Law of Thermodynamics in such a way that everyone can understand them.
This textbook is a unique treatise on the present status of particle physics summarised for physics students at an introductory level: it provides insights into essential experimental and theoretical techniques and will gradually deepen the reader’s understanding of the field.
The “Ultraviolet Catastrophe”, the failure to account for black-body radiation, led to quantum mechanics. Another catastrophe was politely ignored and fluid dynamics remained trapped in the nineteenth century. The book outlines a solution to this dilemma.
The General Theory of Particle Mechanics
Yefremov provides insights into the tight connection between fundamental math and mechanics, demonstrating that quantum, classical, and relativistic mechanics can be regarded as links of a single theoretical chain readily extracted from a simple mathematical medium.
Fundamental Optics
This book updates our knowledge of light with new data from reproducible experiments. It presents a new theory which interprets verifiable information according to the various speeds of the lights involved, examining light’s general motions in space.
The muon is vital to particle, nuclear, and atomic physics, and a key component of the Standard Model. Muonic processes provide crucial information on the weak interaction. This book explores the various aspects of muon physics, highlighting the most recent experiments conducted.
This book presents a theoretical description of fiber Bragg gratings, focusing on channel densification and tunability. It includes full Matlab code to synthesize and optimize various gratings using genetic algorithms, simulated annealing, and tabu search.
Entropy generation minimization is widely used in thermal problems, sometimes as a unified theory. Is this really the case? This book answers this question, showing the theory has limitations and a definite application scope, beyond which it may provide incorrect results.
The unique experiments, numerous measurements, and resulting data presented here, have been collected over 30 years of research and prove with scientific precision, that consciousness involves more than just the brain, but actually depends on the very fabric of the universe.